An Electrochemical Study of Frustrated Lewis Pairs: A Metal-Free Route to Hydrogen Oxidation
نویسندگان
چکیده
Frustrated Lewis pairs have found many applications in the heterolytic activation of H2 and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H2 can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H2 oxidation by 610 mV (117.7 kJ mol(-1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology.
منابع مشابه
Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04564a Click here for additional data file.
Whilst hydrogen is a potentially clean fuel for energy storage and utilisation technologies, its conversion to electricity comes at a high energetic cost. This demands the use of rare and expensive precious metal electrocatalysts. Electrochemical-frustrated Lewis pairs offer a metal-free, CO tolerant pathway to the electrocatalysis of hydrogen oxidation. They function by combining the hydrogen-...
متن کاملMetal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids.
Whilst hydrogen is a potentially clean fuel for energy storage and utilisation technologies, its conversion to electricity comes at a high energetic cost. This demands the use of rare and expensive precious metal electrocatalysts. Electrochemical-frustrated Lewis pairs offer a metal-free, CO tolerant pathway to the electrocatalysis of hydrogen oxidation. They function by combining the hydrogen-...
متن کاملMetal-Free Dihydrogen Oxidation by a Borenium Cation: A Combined Electrochemical/Frustrated Lewis Pair Approach**
In order to use H2 as a clean source of electricity, prohibitively rare and expensive precious metal electrocatalysts, such as Pt, are often used to overcome the large oxidative voltage required to convert H2 into 2 H(+) and 2 e(-). Herein, we report a metal-free approach to catalyze the oxidation of H2 by combining the ability of frustrated Lewis pairs (FLPs) to heterolytically cleave H2 with ...
متن کاملElectrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells
In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...
متن کاملA Combined “Electrochemical–Frustrated Lewis Pair” Approach to Hydrogen Activation: Surface Catalytic Effects at Platinum Electrodes
Herein, we extend our "combined electrochemical-frustrated Lewis pair" approach to include Pt electrode surfaces for the first time. We found that the voltammetric response of an electrochemical-frustrated Lewis pair (FLP) system involving the B(C6 F5 )3 /[HB(C6 F5 )3 ]- redox couple exhibits a strong surface electrocatalytic effect at Pt electrodes. Using a combination of kinetic competition s...
متن کامل